Ir para conteúdo
  • Cadastre-se

Pesquisar na Comunidade

Mostrando resultados para as tags ''novos materiais''.

  • Pesquisar por Tags

    Digite tags separadas por vírgulas
  • Pesquisar por Autor

Tipo de Conteúdo


Fórum

  • Avisos, Notícias e Regras
    • Como funciona o fórum?
    • Como funciona o fórum? (Inglês)
    • Como funciona o fórum? (Espanhol)
    • Gerenciador de arquivos
    • Notícias
    • Desmontagens de Notebooks, Smartphones e etc...
  • Eletrônica
    • Eletrônica em Geral
    • Receptores de TV
    • Arduino
    • Treinamento Eletrônica
    • Ferramentas para eletrônica
    • Projetos, Montagens e Mecatrônica
    • TVs de PLASMA, LCD, LED e CRT
    • Vídeo Games
    • Aparelhos de Som, GPS, Gadgets e Tecnologia
    • Celulares, Smartfones e Câmeras fotográficas
    • Tablet, Ipad
    • Fontes & No-Breakes
    • Eletrônica Automotiva
    • Eletrodomésticos
  • Informática
    • Notebook's
    • Motherboards, PCs, All in One & Cia
    • Recuperação de Arquivos e Mídias
    • Monitores e Projetores
    • Impressoras e Copiadoras
    • Redes e Internet
  • Software
    • Webmaster
    • Linux - Aplicativos e Sistemas Operacionais
    • Windows - Aplicativos e Sistemas Operacionais
    • Mac OS - Aplicativos e Sistemas Operacionais
    • Segurança antivírus
  • Diversos
    • Trocas, Vendas e Promoções
    • Jogos
    • ELetrotreco
    • Apresentações
    • Assuntos Diversos
    • Sugestões para Melhoria
    • Filmes, séries, animes e músicas
  • Clube do 3D's Qual impressora comprar em 2020
  • cicero's Tópicos
  • cicero's Tópicos
  • cicero's Tópicos
  • Repair of large household appliances, white goods's Samsung washing machine panel repairópicos
  • Repair of large household appliances, white goods's Error codes E8
  • Repair of large household appliances, white goods's Tópicos
  • Repair of large household appliances, white goods's Hello !
  • Repair of large household appliances, white goods's Tópicos
  • Repair of large household appliances, white goods's Hello membros !
  • Repair of large household appliances, white goods's Tópicos
  • Repair of large household appliances, white goods's TópicosReparação de fechadura de porta máquina de lavar louça Electrolux
  • Repair of large household appliances, white goods's Olá ! Falar sobre Inteligência artificial
  • Lives H3Eletrônica's Tópicos
  • Lives H3Eletrônica's Lojinha do H3

Categorias

  • All in One - Esquemas
  • All in One - Bios
    • AOC
    • Asus
    • Diversos
    • Dell
    • Lenovo
    • LG
    • Positivo
    • HP & Compaq
  • Apostilas em Geral
    • Arduino
    • Apple MacBook
    • Diversas
    • Datasheets
    • Eletrônica
    • Elétrica e Eletrônica Industrial
    • Fontes & Nobreaks
    • Informática
    • Impressoras
    • Linux
    • Monitores
    • Rede, Roteadores e Modens
    • Software
    • Receptores Satélite Cabo
    • Tablets, Celulares e GPS
    • TVs Plasma, LCD, Led e CRT
    • Vídeo Games
  • Apple MacBook
    • Aplicativos
    • Bios
    • Esquemas
  • Desktop - BIOS
    • Asus
    • DFI
    • Dell
    • ECS
    • Foxconn
    • Gigabyte
    • HP e Compaq
    • Intel
    • Megaware
    • MSI
    • Outros
    • PCWare
    • Positivo
    • Phitronics
    • Daten
  • Desktop - Esquemas
    • Abit
    • Asus
    • Biostar
    • Diversos
    • Ecs
    • Foxconn
    • Getway
    • Gigabyte
    • Intel
    • Msi
  • Disco Rígido (HD) - BIOS
    • Corsair
    • Hitachi
    • Kingston
    • Maxtor
    • Sandisk
    • Seagate
    • Samsung
    • Toshiba
    • Western Digital
  • Eletroeletrônicos em Geral
    • Áudio
    • Diversos
    • Eletrodomésticos
    • Equipamentos para eletrônica
    • Firmwares
    • Projetores
    • Vídeo & Imagem
    • Diversos
    • Curvas - Rastre Curve
  • Eletrônica Automotiva
    • Diversos
    • Esquemas elétricos
    • Esquemas elétricos Volkswagen
    • Esquemas elétricos Chevrolet
    • Esquemas elétricos Ford
    • Esquemas elétricos Fiat
    • Esquemas elétricos Renault
    • Injeção Eletrônica
    • Som Automotivo
  • Fontes & Nobreaks
    • Diversos
    • Fontes Desktops
    • Fontes Notebooks
    • Nobreaks APC
    • Nobreaks CP Eletrônica
    • Nobreaks Enermax
    • Nobreaks Force Line
    • Nobreaks Logmaster
    • Nobreaks Microsol
    • Nobreaks NHS
    • Nobreaks Ragtech
    • Nobreaks SMS
    • Nobreaks Ts-Shara
  • Impressoras
    • Brother
    • Epson
    • HP
    • Lexmark
    • Outras marcas
    • Samsung
    • Xerox
  • Inverters
  • Monitores - Esquemas
    • AOC
    • Diversos
    • Dell
    • LG
    • Lenovo
    • Philco
    • Philips
    • Proview
    • Samsung
  • Monitores - Bios
    • AOC
    • Bluesky
    • CCE
    • HBuster
    • LCD Notebook
    • LG
    • Outros
    • Philco
    • Philips
    • Proview
    • Sony
    • Samtron
    • Samsung
    • Semp Toshiba
  • Manuais - Notebook & Desktop
    • Desktop
    • Notebook
  • Notebook - BIOS
    • Limpeza de regiões ME/TXE
    • ACER
    • ACTEON
    • AMAZON
    • ASUS
    • Buster
    • CCE
    • Clevo
    • DELL
    • Emachines
    • Firstline
    • Gateway
    • HP e COMPAQ
    • Intelbras
    • Itautec
    • Kennex
    • Lenovo
    • LG
    • Megaware
    • Microboard
    • Mirax
    • MSI
    • Outros
    • Philco
    • Philips
    • Positivo
    • Programas de BIOS
    • Qbex
    • Samsung
    • Shuttle
    • SIX
    • Sony
    • STI
    • Toshiba
    • DATEN
  • Notebook - Drivers
  • Notebook - Esquemas
    • ACER
    • AMOI
    • ASUS
    • Avell
    • BENQ
    • CCE
    • CLEVO
    • COMPAL
    • DELL
    • ECS
    • FIC
    • FOXCONN
    • FUJITSU
    • GATEWAY
    • Gigabyte
    • HP - COMPAQ
    • IBM - LENOVO
    • INTELBRAS
    • INVENTEC
    • ITAUTEC
    • JETWAY
    • Lenovo - IBM
    • LG
    • MITAC
    • MSI
    • Outros
    • Philco
    • Positivo
    • QUANTA
    • Samsung
    • Shuttle
    • Sony
    • STI - SEMP TOSHIBA
    • TOPSTAR
    • Toshiba
    • TWINHEAD
    • UNIWILL
    • WISTRON
  • Placas de Vídeo
  • Programas & Softwares
    • Android
    • Eletrônica
    • Linux
    • Windows
    • BOARDVIEW SOFTWARES
  • Receptores Satélite, Cabo, DVR e HDVR
  • Roteadores e Modens - Bios
  • Tablets, Celulares e GPS
    • GPS
    • Flash/Bios
    • Aplicativos & Softwares
    • Esquemas & Manuais de Serviço
  • TV - Esquemas e Manuais
    • AOC
    • CCE
    • HBuster
    • LG
    • Outros
    • Panasonic
    • Philco
    • Philips
    • Samsung
    • Semp Toshiba
    • Sony
  • TV - Software & Flash
    • AOC
    • CCE
    • HBuster
    • LG
    • Outros
    • Philco
    • Philips
    • Samsung
    • Semp Toshiba
    • Sony
  • Vídeo Games
    • Esquemas
    • Glitcher
    • Software
  • Montagens, projetos e afins
  • cicero's Downloads
  • Repair of large household appliances, white goods's Downloads

Blogs

  • Eletrônica Básica & Avançada
  • Desmontando
  • InfoTech
  • Procedimentos, Dicas e ME Clean region linha Apple e Notebook.
  • Cozinha eletrônica
  • Passeando na Matrix...
  • Tecgess
  • Estudo Baseado na Arquitetura de Celulares.'s Blog
  • Repair of large household appliances, white goods's Blog
  • Repair of large household appliances, white goods's BlogRepair of large household appliances, white goods
  • Repair of large household appliances, white goods's Blog
  • Repair of large household appliances, white goods's Blog
  • Repair of large household appliances, white goods's Repair of large household appliances, white goods
  • Repair of large household appliances, white goods's videos
  • Repair of large household appliances, white goods's Hello !
  • Repair of large household appliances, white goods's Hello !
  • Repair of large household appliances, white goods's Dear Sire!
  • Repair of large household appliances, white goods's Olá a todos!
  • Lives H3Eletrônica's Blog

Product Groups

  • Assinaturas VIP
  • Downloads Grátis
  • Acesso casos resolvidos
  • Áreas Secretas do EBR
  • Assinaturas Vitalícias
  • Promoções

Encontrar resultados no...

Encontrar resultados que...


Data de Criação

  • Início

    FIM


Data de Atualização

  • Início

    FIM


Filtrar pelo número de...

Data de Registro

  • Início

    FIM


Grupo


Perfil do Facebook


Twitter nome de usuário


Sexo


URL do Website


Localidade


Texto pessoal


Sobre mim

Foram encontrados 2 registros

  1. Tabela Periódica para moléculas é quadridimensional Redação do Site Inovação Tecnológica - 23/09/2019 Foto 1 Além de serem quadridimensionais, são várias tabelas periódicas para diferentes tipos de moléculas. [Imagem: Tsukamoto et al. - 10.1038/s41467-019-11649-0] Tabela Periódica para moléculas O ano em que a Tabela Periódica completou 150 anos marcou também o advento de uma Tabela Periódica para altas pressões, seguindo-se a uma Tabela Periódica Monoatômica, que está servindo como guia para sintetizar materiais bidimensionais. E já há novidades na área: uma equipe do Instituto de Tecnologia de Tóquio acaba de desenvolver tabelas semelhantes à tradicional Tabela Periódica dos elementos, mas que listam moléculas em vez de átomos. Esta abordagem promete facilitar muito o trabalho de prever novas substâncias estáveis e criar novos materiais úteis. Embora alguns pesquisadores já tivessem pensado nessa possibilidade antes, e até proposto regras periódicas para prever a existência de certas moléculas, essas previsões se mostraram válidas apenas para grupos de átomos com simetria quase esférica, devido às limitações das próprias teorias. No entanto, existem muitos grupos de átomos com outras formas e outros tipos de simetrias que devem ser considerados em aplicações do mundo real. Modelos orbitais adaptados à simetria Foto 2 A chave para a elaboração das tabelas periódicas para moléculas consiste em levar em conta as simetrias das moléculas. [Imagem: Tsukamoto et al. - 10.1038/s41467-019-11649-0] Takamasa Tsukamoto e seus colegas propuseram agora uma nova abordagem, que se mostrou capaz de viabilizar a construção de tabelas periódicas para moléculas com múltiplos tipos de simetrias. A nova estrutura é baseada em uma observação sobre o comportamento dos elétrons de valência dos átomos que formam aglomerados moleculares. Os elétrons de valência podem ser considerados elétrons "livres" em átomos com um orbital mais externo e, portanto, podem interagir com os elétrons de outros átomos para formar compostos. Quando múltiplos átomos formam um aglomerado com uma forma simétrica, seus elétrons de valência tendem a ocupar orbitais moleculares específicos, chamados de "orbitais superatômicos", nos quais eles se comportam quase exatamente como se fossem os elétrons de um átomo enorme. Levando esse fato em consideração, e analisando os efeitos das simetrias estruturais para cada aglomerado, os pesquisadores propuseram o que eles chamam de "modelos orbitais adaptados à simetria", ou SAO na sigla em inglês (Symmetry-Adapted Orbital). Esses modelos se mostraram de acordo com várias moléculas conhecidas e com o estado da arte em termos de cálculos da mecânica quântica. As novas tabelas periódicas, que podem ser criadas para cada tipo de simetria, são na verdade quadridimensionais, porque as moléculas são organizadas de acordo com quatro parâmetros: grupos e períodos (com base em seus elétrons de valência, de forma similar à Tabela Periódica normal), espécies (com base nos elementos constituintes) e famílias (com base no número de átomos). Foto 3 Os nanomateriais - aqui ilustrados apenas na simetria tetraédrica - estão entre os principais alvos da busca por novos materiais promissores. [Imagem: Tsukamoto et al. - 10.1038/s41467-019-11649-0] Síntese de novos materiais As tabelas periódicas para moléculas representam o guia que faltava para o campo dos novos materiais, sempre envolvido com o projeto e a síntese de materiais com propriedades inovadoras. O caminho a seguir consiste em expandir ainda mais essas tabelas para abranger grupos moleculares com outras formas e simetrias, e usá-las para prever moléculas estáveis que possam então ser sintetizadas. "As modernas técnicas de síntese nos permitem produzir muitos materiais inovadores baseados no modelo SAO, como materiais magnéticos leves. Entre as infinitas combinações de elementos constituintes, a tabela periódica proposta será uma contribuição significativa para a descoberta de novos materiais funcionais," disse o professor Yamamoto. Bibliografia: Artigo: Periodicity of molecular clusters based on symmetry-adapted orbital model Autores: Takamasa Tsukamoto, Naoki Haruta, Tetsuya Kambe, Akiyoshi Kuzume, Kimihisa Yamamoto Revista: Nature Communications DOI: 10.1038/s41467-019-11649-0 Fonte: https://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=tabela-periodica-para-moleculas&id=010160190923#.Xb-FcZJKhpg
  2. Fótons interagem com fótons, criando moléculas de luz Redação do Site Inovação Tecnológica - 22/02/2018 Uma possibilidade tentadora seria usar os fótons que interagem entre si para fazer sabres de luz. [Imagem: Christine Daniloff/MIT] Fótons que interagem entre si Faça um experimento rápido: leve duas lanternas para uma sala escura e faça com que os feixes de luz de ambas se cruzem no espaço vazio. Apenas para lhe poupar um pouco de trabalho, vale adiantar que o resultado será decepcionante: você não observará nada de peculiar. Isso ocorre porque os fótons individuais que compõem a luz não interagem entre si, eles simplesmente passam uns pelos outros, indo iluminar a parede ou o que encontrarem pela frente. Mas, e se as partículas de luz pudessem ser induzidas a interagir, atraindo-se e repelindo-se como os átomos na matéria comum? Uma possibilidade tentadora, embora ainda no reino da ficção científica, seria a fabricação de sabres de luz - feixes de luz que poderiam puxar e empurrar um ao outro. Ou, em um cenário mais provável, dois feixes de luz poderiam se encontrar e se fundir em um fluxo luminoso único para fazer coisas como... computações. Qual é a cor do sabre de luz mais poderoso? Moléculas de luz Pode parecer que esse comportamento óptico exigiria quebrar as leis da física, mas, de fato, ele acaba de ser demonstrado em um experimento bem comportado - sob condições especiais, os fótons de fato interagiram. Qi-Yu Liang e seus colegas descreveram como os fótons se juntaram em duplas e trios, juntando-se para formar um tipo completamente novo de matéria fotônica - essencialmente, moléculas de luz. O experimento consistiu em disparar um raio laser muito fraco através de uma nuvem densa de átomos de rubídio ultrafrios - um condensado de Bose-Einstein, uma espécie de átomo artificial, já que, sob temperaturas criogênicas, os átomos de rubídio entram em ressonância e passam a se comportar como se fossem um único átomo. A surpresa é que, em vez de saírem da nuvem como fótons soltos, espaçados aleatoriamente, o que emergiu foram fótons unidos em pares ou mesmo trigêmeos, sugerindo que algum tipo de interação ocorreu entre eles - neste caso, uma atração. Luz líquida unifica eletrônica e fotônica Os fótons juntaram-se em pares e trios, ganharam massa e ficaram mais lentos. [Imagem: Qi-Yu Liang et al. - 10.1126/science.aao7293] Interações entre partículas Embora os fótons normalmente não tenham massa e viajem a quase 300.000 quilômetros por segundo (a velocidade da luz), os fótons ligados na verdade adquiriram uma fração da massa de um elétron. Essas partículas de luz pesadas também se mostraram relativamente lentas, viajando cerca de 100.000 vezes mais devagar do que os fótons comuns. Estes resultados, se confirmados por outras equipes, demonstram que os fótons podem, de fato, se atrair, ou se entrelaçar, uns com os outros. Como o átomo artificial gerou esse efeito é algo que ainda deverá ser pesquisado. Mas, se for possível fazê-los interagir de outras maneiras, esses fótons pesados poderiam ser usados para realizar cálculos - em processadores quânticos ou fotônicos extremamente rápidos, por exemplo. Em seu artigo, a equipe se pergunta também se essas interações poderiam ocorrer não apenas entre dois fótons, mas também entre outras partículas. "Por exemplo, você pode combinar moléculas de oxigênio para formar O2 e O3 (ozônio), mas não O4, e, para algumas moléculas, você não consegue formar nem mesmo uma molécula de três partículas. Então, fica uma questão em aberto: Você poderia adicionar mais fótons a uma molécula para fazer coisas maiores e maiores?" sugeriu o professor Vladan Vuletic, que há algum tempo vem sugerindo a possibilidade real de se criar moléculas de luz, cristais de pura luz e... sabres de luz. É bom lembrar que, há pouco mais de um ano, uma equipe alemã apresentou uma outra técnica que também permite alterar a luz com a própria luz, uma outra forma de fazer com que fótons interajam com fótons. Cientistas solidificam a luz Bibliografia: Observation of three-photon bound states in a quantum nonlinear medium Qi-Yu Liang, Aditya V. Venkatramani, Sergio H. Cantu, Travis L. Nicholson, Michael J. Gullans, Alexey V. Gorshkov, Jeff D. Thompson, Cheng Chin, Mikhail D. Lukin, Vladan Vuletic Science DOI: 10.1126/science.aao7293 Luz líquida unifica eletrônica e fotônica Redação do Site Inovação Tecnológica - 09/08/2016 O "mar" de luz líquida emite feixes que podem ser controlados por um campo elétrico. [Imagem: Alexander Dreismann] Chave de luz Conforme os transistores ficam cada vez menores, está sendo necessário lidar com os efeitos quânticos associados com átomos e elétrons individuais. Por isso tem havido um esforço crescente na busca de alternativas para o elétron como o transportador primário de informação. Alexander Dreismann e seus colegas da Universidade de Cambridge, no Reino Unido, encontraram uma dessas alternativas explorando um estado da matéria conhecido como "luz líquida", que permite misturar sinais elétricos e ópticos usando quantidades mínimas de energia. Eles construíram um novo tipo de chave que é energeticamente muito eficiente, o que significa que o componente pode se tornar a base de futuras tecnologias de processamento de sinais e de transmissão de informações - além de um transístor ser essencialmente uma chave, o componente também funciona como um conversor elétrico-óptico. Luz líquida O nome técnico da luz líquida é "Polariton de Bose-Einstein". Os polaritons são quasipartículas que nascem da junção de elétrons com fótons, e estão na base de um campo emergente conhecido como Plasmônica. Um Condensado de Bose-Einstein é um preparado especial da matéria em que milhões de átomos se comportam como se fossem um só, daí ser ele conhecido como átomo artificial. Luz gasosa e luz líquida O condensado de Polaritons de Bose-Einstein foi gerado aprisionando a luz entre dois espelhos espaçados por apenas alguns nanômetros, onde os fótons interagem com os elétrons na superfície de placas finas de um material semicondutor, criando uma quasipartícula que é meio luz e meio matéria. Quando muitos polaritons são colocados no mesmo espaço - um excesso deles para esse espaço - é possível induzir sua condensação, similar à condensação de gotículas de água em um ambiente saturado. Com isto, forma-se um fluido de luz-matéria, ou luz líquida. Fluido de luz-matéria O fluido de luz-matéria pode girar no sentido horário (spins para cima) ou anti-horário (spins para baixo), e esse giro pode ser controlado por meio de um campo elétrico. Como o fluido emite luz com seu spin característico, esse controle funciona como uma chave, alternando os modos de luz que são então coletados e podem ser enviados por meio de fibras ópticas para comunicação. Na prática, o sistema todo funciona como um meio de converter sinais elétricos em sinais ópticos, um dos grandes gargalos na hora de conectar as rápidas vias de comunicação por luz com os bem mais lentos circuitos lógicos eletrônicos. "O interruptor de polariton unifica as melhores propriedades da eletrônica e da óptica em um pequeno componente que pode transmitir em velocidades muito altas e usando quantidades mínimas de energia," disse Dreismann. Como o protótipo funciona a temperaturas criogênicas, devido às características do material semicondutor usado, ele ainda é inadequado para uso prático fora dos laboratórios. Por isso a equipe anunciou que está pesquisando outros materiais que possam operar a temperatura ambiente, de modo que o dispositivo possa ser comercializado. Bibliografia: A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates Alexander Dreismann, Hamid Ohadi, Yago del Valle-Inclan Redondo, Ryan Balili, Yuri G. Rubo, Simeon I. Tsintzos, George Deligeorgis, Zacharias Hatzopoulos, Pavlos G. Savvidis, Jeremy J. Baumberg Nature Materials DOI: 10.1038/nmat4722 Cientistas solidificam a luz Redação do Site Inovação Tecnológica - 12/09/2014 Luz cristalizada: inicialmente os fótons fluem facilmente entre os dois qubits, produzindo as grandes ondas à esquerda. A seguir, a luz cristaliza, mantendo os fótons no lugar (direita). [Imagem: Universidade de Princeton] Cristal de luz Cientistas garantem ter solidificado a luz, cristalizando os fótons como se eles fossem os átomos na rede cristalina de um sólido. Não se trata de espalhar a luz através de cristal - a luz se transforma em um cristal, com os fótons ficando fixos no lugar. Os cientistas já haviam torcido e retorcido a luz, congelado a luz e até construído rodas fotônicas. Mas formar uma rede cristalina de luz é algo inédito. Moléculas de luz, cristais de pura luz e... sabres de luz "É algo que nunca vimos antes," disse Andrew Houck, da Universidade de Princeton, nos Estados Unidos. "Este é um novo comportamento para a luz." Infelizmente, você não conseguirá pegar o cristal de luz na mão, uma vez que esse comportamento exótico cessa tão logo o feixe é desligado, mas os cientistas garantem que o experimento sem precedentes poderá responder a algumas perguntas fundamentais sobre a física da matéria. Essas perguntas têm sido feitas no esforço para desenvolver materiais com propriedades não encontradas na natureza, como supercondutores que funcionem a temperatura ambiente, e os tão sonhados computadores quânticos. Onda, partícula, sólido Para construir seu cristalizador de luz, James Raftery e seus colegas criaram uma estrutura feita de materiais supercondutores que contém 100 bilhões de átomos projetados para agir como uma entidade única - um átomo artificial. O aparato é baseado no processador quântico que a equipe vem desenvolvendo desde 2007, no qual átomos artificiais funcionam como qubits. Pelas regras da mecânica quântica, os fótons em um fio supercondutor que passa ao lado do processador herdam algumas das propriedades do átomo artificial - em certo sentido criando uma conexão entre eles. Fótons normalmente não interagem uns com os outros, mas, neste sistema, os pesquisadores foram capazes de criar um novo comportamento no qual os fótons começam a interagir como partículas, e não apenas como ondas. "Essas interações geram então um comportamento coletivo da luz totalmente novo - parecido com as fases da matéria, como os líquidos e cristais estudados na física da matéria condensada," explica Darius Sadri, membro da equipe. Controlando o funcionamento do átomo artificial no interior do chip e a energia fluindo pelo supercondutor, os pesquisadores podem fazer com que a luz fique "espirrando" de um lado para o outro, como se fosse um líquido, ou simplesmente congele, criando um "cristal de luz". Ou seja, além de se comportar como onda e como partícula, agora a luz se manifestou como matéria sólida como esta é vista pelas leis da mecânica clássica, criando uma forma simples e direta de interagir e, eventualmente, interferir com a matéria na fronteira quântico-clássica. Detalhe do processador fotônico onde o experimento foi realizado. [Imagem: James Raftery et al. - 10.1103/PhysRevX.4.031043] Construindo a matéria Como o átomo artificial é um qubit por definição, a equipe está entusiasmada com a possibilidade de usar esse novo comportamento da luz para criar novas formas de computação ainda mais eficientes e rápidas do que as que vinham sendo consideradas pela computação quântica. O protótipo usado no experimento é relativamente pequeno, com apenas dois átomos artificiais emparelhados com um fio supercondutor. Mas a equipe afirma que, construindo um dispositivo maior, e aumentando o número de interações dos fótons, será possível aumentar sua capacidade e simular sistemas mais complexos. Isto tem a ver com os simuladores quânticos, circuitos capazes de simular de uma única molécula até um material sólido completo a partir dos primeiros princípios quânticos das suas partículas constituintes. É como aprender a construir a matéria de baixo para cima. Simulador quântico permite pilotar átomos No futuro, a equipe pretende construir dispositivos com centenas de átomos artificiais, com os quais eles esperam observar fases ainda mais exóticas da luz, tais como superfluidos e isolantes. "Estamos interessados em explorar - e, finalmente, controlar e dirigir - o fluxo de energia em nível atômico", disse outro membro da equipe, Hakan Tureci. "O objetivo é entender melhor os materiais e os processos atuais e avaliar materiais que ainda não podemos criar." Bibliografia: Observation of a Dissipation-Induced Classical to Quantum Transition James Raftery, Darius Sadri, Sebastian Schmidt, Hakan E. Tureci, Andrew A. Houck Physical Review X Vol.: 4, 031043 DOI: 10.1103/PhysRevX.4.031043 Fontes: http://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=fotons-interagem-fotons-criando-moleculas-de-luz&id=010115180222#.WpQnDmrwZpg http://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=luz-liquida-unifica-eletronica-fotonica&id=010110160809#.WpRmAWrwZpg http://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=cientistas-solidificam-luz&id=010160140912#.WpRmomrwZpg

SOBRE O ELETRÔNICABR

EletrônicaBR é o melhor fórum técnico online, temos o maior e mais atualizado acervo de Esquemas, Bios e Firmwares da internet. Através de nosso sistema de créditos, usuários participativos têm acesso totalmente gratuito. Os melhores técnicos do mundo estão aqui!
Técnico sem o EletrônicaBR não é um técnico completo! Leia Mais...
×
×
  • Criar Novo...