Jump to content
GNMilasi

notícia O que é CPU e GPU? Qual a diferença entre elas?

Rate this topic

Recommended Posts

O que é CPU e GPU? Qual a diferença entre elas?

 

O que é CPU e GPU? Uma única letra resulta em um funcionamento completamente diferente para dois componentes essenciais de um computador, principalmente aqueles voltados para jogos ou aplicações gráficas mais pesadas. Mas, afinal de contas, qual a diferença real entre esses dois termos, que podem causar dúvidas na cabeça de quem está procurando um PC para se divertir ou trabalhar?

 

A resposta, felizmente, é simples e já pode ser respondida com um olhar sobre o que, exatamente, são essas siglas: CPU é a abreviação de Central Processing Unit, ou Unidade Central de Processamento; enquanto GPU é a Graphics Processing Unit, ou a Unidade de Processamento Gráfico. A primeira é a peça central de qualquer computador, enquanto a segunda simplesmente não pode existir sem ela.

 

 

O mandachuva

 

128.523001-CPU-processador.jpg

A CPU é como o "cérebro" do computador, sendo o responsável por todas as atividades da máquina e por interpretar os comandos do usuário

 

 

Para resumir da forma mais básica possível, a CPU é o cérebro do computador. Quando falamos de modelos de processadores de marcas como Intel ou AMD, por exemplo, nas notícias do Canaltech, estamos nos referindo a esse componente, que basicamente é responsável por todas as operações realizadas em uma máquina, das mais simples às mais complexas.

 

E assim como nosso cérebro, o processador está sempre funcionando. Quando você abriu o navegador para acessar este artigo, tecnicamente, o que você fez foi enviar um comando à CPU, que realizou os cálculos necessários e, efetivamente, iniciou o aplicativo para você. Até mesmo o movimento do mouse e o clique necessário para isso passaram pelo processador.

 

O mesmo vale para outras rotinas que não estão necessariamente ao alcance do usuário, mas também influenciam na utilização do computador. É o processador, por exemplo, o responsável por decidir quais dados serão armazenados na memória e de que maneira isso será feito, além de balancear a forma que seu próprio poder será utilizado para proporcionar a melhor experiência, de acordo com aplicações prioritárias, mais utilizadas, críticas ou aquelas que exigem um mais processamento.

 

No lado mais técnico da questão, vale a pena citar que todos os comandos e atividades feitas em um computador são, basicamente, números (mais exatamente, dois deles, 0 e 1). O que você enxerga graficamente na tela, com a seta do mouse, um menu ou até mesmo este texto, no interior da CPU são sequências numéricas infinitas e problemas de matemática ou lógica que estão sendo resolvidos pela CPU em tempo real e velocidade incrivelmente rápida, convertidos de volta em um formato amigável que pode ser visto pelos olhos até mesmo dos mais leigos.

 

 

181548.jpg

Os processadores da linha Core i, da Intel, estão entre os exemplos de CPU mais utilizadas do mercado

 

 

Todos os dispositivos que realizam operações possuem uma CPU, desde o seu computador ou celular até aquele alto-falante inteligente ou seu console de videogame. São exemplos as famílias AMD Ryzen e Intel Core i, para PCs, ou Snapdragon e Bionic, para smartphones e tablets. Apesar da finalidade um bocado diferente, ambos funcionam essencialmente da mesma maneira.

 

Sobre os processadores, ainda é importante frisar que eles são capazes de realizar diversas operações ao mesmo tempo, e na medida em que evoluem, esse potencial só aumenta. Os diferentes núcleos são os principais responsáveis por esse aumento de capacidade e, basicamente, quanto maior o número deles, maior sua capacidade de processamento.

 

88621.jpg

A quantidade de núcleos define o poder de processamento paralelo de uma CPU, permitindo que diferentes tarefas sejam desempenhadas pelo componente ao mesmo tempo

 

 

É como se você tivesse vários cérebros para pensar em diferentes coisas de uma só vez e é exatamente assim que um sistema operacional como o Windows trata os processadores de núcleo múltiplo. São várias cabeças pensando ao mesmo tempo e de forma paralela, dividindo as atividades entre si; caso contrário, a quantidade de tarefas simultâneas poderia ultrapassar a capacidade do componente, resultando em lentidão e travamento.

 

Vale lembrar que, mesmo que você esteja utilizando apenas um único recurso por vez, seu computador está trabalhando em diversos deles ao mesmo tempo. Enquanto você joga ou lê esse artigo no navegador, seu antivírus permanece ativado e te protegendo, enquanto o e-mail continua de prontidão para avisar sobre a chegada de novas mensagens. Você conseguiria manter a atenção em um filme e livro ao mesmo tempo? Provavelmente não, mas a CPU, com seus diferentes núcleos, pode fazer isso.

 

Afinal de contas, como dito, é essa a unidade responsável por transformar todos os comandos e atividades pedidas pelo usuário ou solicitadas pelo sistema em algo palpável, como a música que você pediu para a assistente do Google reproduzir, a abertura de uma rede social para postar aquela selfie bonita ou a execução daquele jogo que você estava tanto esperando. E quando falamos em games, entramos na segunda parte dessa pergunta, sobre as utilidades da GPU.

 

 

O “artista”
 

25241.jpg

Se a CPU é a central de processamento do computador, GPUs como as da linha GeForce GTX servem aos trabalhos gráficos e visuais do computador

 

 

Como o nome já indica, a GPU, conhecida popularmente como placa de vídeo, também é uma unidade de processamento como a CPU, mas com uma diferença: ela é voltada especificamente para atividades gráficas como jogos, softwares de edição de vídeo, modelagem tridimensional ou exibição de vídeos. Tais aplicações exigem cálculos específicos e muito mais especializados, que podem entrar no caminho do funcionamento geral de um processador.

 

Teoricamente, processadores também podem realizar tais atividades, mas, na prática, esse tipo de coisa entraria em conflito com todas as outras tarefas que estão sendo feitas pela CPU. Todas, sim, são baseadas em contas aritméticas e problemas numéricos baseados em 0 e 1, que depois são convertidos de forma visual para o usuário. As semelhanças, entretanto, param por aí, na parte essencial da coisa.

 

A grande diferença entre os cálculos comuns de um processador e aquele envolvido em tarefas gráficas está na carga exigida por essas aplicações, com muitos pontos para formar a imagem, conversões de arquivos e geometria para formar as figuras tridimensionais vistas em um jogo. É aí que entra o processamento de uma GPU, que por si só funciona de forma paralela à CPU e realiza tarefas específicas para que a unidade central de processamento possa lidar com outras coisas.

 

224841.jpg

Alguns jogos até rodam sem uma placa de vídeo no PC, mas nada como Red Dead Redemption 2, que exige o máximo de desempenho para funcionar bem

 

 

Quando mencionamos nomes como Geforce RTX ou AMD Radeon, é de GPUs que estamos falando. Seu celular também tem um desses, na forma de chips como Adreno, normalmente disponíveis em smartphones Android. As placas de vídeo também contam com diferentes núcleos pelo exato mesmo motivo: dividir os trabalhos mais pesados, garantir otimização e um melhor aproveitamento dos recursos disponíveis.

 

Você consegue rodar um jogo no seu computador sem GPU? Consegue, mas com qualidade gráfica reduzida e, provavelmente, enfrentando um bocado de lentidão. É como chamar um especialista para realizar um trabalho ou, então, confiar em um faz tudo para isso; o primeiro sempre entregará um resultado melhor.

 

Ao contrário, porém, não existe computador sem uma CPU. Todos os outros componentes dependem dela, desde as memórias e o acesso aos dados armazenados até atividades como economia de energia, gerenciamento de recursos e até mesmo a utilização da GPU. O processador é, basicamente, a peça central para que toda a mágica aconteça.

 

 

Fonte

  • Like 6

Share this post


Link to post
Share on other sites

CPU (unidade central de processamento) é o processador do computador. Você o encontra dentro do gabinete ou do seu smartphone. ... GPU (unidade de processamento gráfico) também conhecido como VPU (unidade de processamento visual) é o processador da sua placa de vídeo.

A diferença entre estes processadores é que a CPU pode fazer qualquer tipo de cálculo de processamento, incluindo os gráficos, porém, o processo através da CPU seria lento demais e por isto é utilizado um processador específico para esta função. A GPU abstém-se apenas a tarefa de realizar o processamento gráfico.

  • Like 6

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Restore formatting

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.


  • Similar Content

    • By eliasgirardi
      Testemunhos de sondagem recolhidos 122 metros abaixo do fundo do mar (5,7 km de profundidade) revelam uma grande população de bactérias aeróbicas. A rocha de basalto aparece em cinza, os minerais da argila em alaranjado e as células bacterianas são as esferas verdes. [Imagem: Suzuki et al. 2020, DOI: 10.1038/s42003-020-0860-1, CC BY 4.0]
       
      Bactérias abaixo do fundo do mar
       
      A vida está impregnada na Terra de uma forma que parecia impensável há poucos anos.
       
      É bom não esquecer que, há poucas décadas, os cientistas defendiam que não haveria vida nos oceanos apenas algumas centenas de metros abaixo da superfície porque, teorizavam eles, nenhum ser vivo suportaria as pressões e nem poderia viver na ausência de luz.
       
      Mal sabiam eles que nem mesmo o fundo sólido do mar representaria um limite para a vida.
       
      Biólogos e geólogos japoneses encontraram colônias enormes e prósperas de bactérias vivendo não no fundo do mar, mas no interior de rochas recolhidas 122 metros abaixo do solo oceânico.
       
      Eles usaram um navio de pesquisa que ancorou acima de três locais no Pacífico Sul e usou um tubo de metal com 5,7 quilômetros de comprimento para alcançar o fundo do oceano. Uma broca perfurou 125 metros abaixo do fundo do mar e retirou amostras, cada uma com cerca de 6,2 centímetros de diâmetro. Os primeiros 75 metros abaixo do fundo do mar são sedimentos e lama, mas os pesquisadores conseguiram coletar outros 40 metros de rocha sólida.
       
      As bactérias foram descobertas vivendo em pequenas rachaduras nessas rochas depois que os pesquisadores aperfeiçoaram um novo método de cortar rochas em fatias ultrafinas para estudar sob o microscópio.
       
      A equipe estima que as rachaduras nas rochas abrigam uma comunidade de bactérias tão densa quanto a do intestino humano - cerca de 10 bilhões de células bacterianas por centímetro cúbico. Para comparação, a densidade média de bactérias que vivem em sedimentos de lama no fundo do mar é estimada em 100 células por centímetro cúbico.
       

      A comprovação das bactérias nessas rochas profundas consumiu 10 anos de aprimoramento das técnicas de análise das rochas. [Imagem: Caitlin Devor/University of Tokyo]
       
      Vida em Marte
       
      E, tão logo comprovaram a existência de vida nas profundezas rochosas da Terra, a equipe imediatamente voltou seus olhos para o céu - mais especificamente, para Marte.
       
      Ocorre que os minerais de argila, ou silicatos, que preenchem as rachaduras nas rochas profundas do oceano têm semelhanças com os minerais encontrados nas rochas de Marte.
       
      "Essa descoberta da vida onde ninguém esperava, em rochas sólidas abaixo do fundo do mar, pode mudar o jogo para a busca pela vida no espaço," afirmou o professor Yohey Suzuki, da Universidade de Tóquio.
       
      "Os minerais são como uma impressão digital de quais condições estavam presentes quando a argila se formou. Níveis neutros a ligeiramente alcalinos, baixa temperatura, salinidade moderada, ambiente rico em ferro, rocha de basalto - todas essas condições são compartilhadas entre o oceano profundo e a argila da superfície de Marte," completou ele.
       
      Os resultados já chamaram a atenção NASA. A equipe anunciou que está discutindo uma colaboração com o Centro Espacial Johnson para projetar equipamentos e técnicas para examinar rochas coletadas da superfície de Marte pelos robôs marcianos.
       
      "Eu estou com uma super-expectativa para encontrar vida em Marte. Se não encontrarmos, então pode ser que a vida dependa de algum outro processo que Marte não possui, como placas tectônicas," ponderou Suzuki.
       
      Fonte: https://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=descoberta-vida-rocha-abaixo-fundo-mar-reacende-esperanca-vida-marte&id=010125200403#.XotbjUBKjIU
    • By eliasgirardi
      A evolução das probabilidades e os fenômenos "impossíveis" da Mecânica Quântica podem ter suas origens na Teoria Especial da Relatividade - pelo menos tudo fica menos estranho. [Imagem: FUW]
       
      Unificação da Mecânica Quântica com a Teoria da Relatividade
       
      Por quase cem anos, a Mecânica Quântica aguarda uma teoria mais profunda para explicar a natureza de seus fenômenos misteriosos. E, sonho de todos os físicos, talvez uma teoria que a unifique com a Teoria da Relatividade.
       
      Se o raciocínio apresentado agora pelos físicos Andrzej Dragan (Universidade de Varsóvia) e Artur Ekert (Universidade de Oxford) resistir ao escrutínio de seus colegas de todo o mundo, a história pode estar muito bem prestes a pregar uma peça cruel em todos esses físicos, de todas as gerações desde Einstein.
       
      A "teoria desconhecida" procurada há décadas, explicando a singularidade da Mecânica Quântica - com o perdão do trocadilho -, seria derivada da Teoria da Relatividade, e não o contrário.
      Hoje, a maioria dos físicos aceita que a descrição da realidade feita pela Mecânica Quântica seria mais fundamental, e que a Teoria da Relatividade teria que ser ajustada a ela.
       
      Dragan e Ekert propõem que não, que as características mais importantes do mundo quântico podem resultar da Teoria Especial da Relatividade, que até agora parecia ter pouco a ver com a Mecânica Quântica.
       

      A velocidade da luz ainda é um campo intrigante de pesquisas: pode ser possível superar a velocidade da luz e a velocidade da luz cai a zero em "pontos excepcionais", por exemplo, sem contar que diminuir a velocidade da luz já é um fato corriqueiro. [Imagem: ICFO]
       
      Velocidade da luz
       
      Desde o início, a Mecânica Quântica surpreende com sua peculiaridade, tão difícil de entender e conciliar com o que estamos acostumados no mundo cotidiano: Por que uma partícula passa por duas fendas simultaneamente? E por que uma partícula "tunela", atravessando uma barreira sólida, quando nós sempre damos dolorosamente com a cara na parede?
       
      E o que realmente incomoda os físicos desde a elaboração da Mecânica Quântica e da Teoria da Relatividade é a incompatibilidade desses três conceitos - três, uma vez que existem duas teorias da relatividade: a especial e a geral.
       
      Os dois físicos desenvolveram um modelo no qual eles provam matematicamente que as características da Mecânica Quântica que determinam sua singularidade e seu exotismo não-intuitivo - teoria que é aceita, além do mais, com base em axiomas, que muitos físicos preferem chamar de "fé" - podem ser explicadas dentro da estrutura da Teoria Especial da Relatividade, dispensando qualquer fé em pressupostos.
       
      Einstein baseou a Teoria Especial da Relatividade em dois postulados. O primeiro é conhecido como o princípio da relatividade galileano (que, é importante notar, é um caso especial do princípio copernicano). Aquele princípio afirma que a física é a mesma em qualquer sistema inercial, isto é, seja em repouso ou em movimento retilíneo uniforme.
       
      O segundo postulado, que Einstein considerava crucial e que foi formulado com base no famoso experimento Michelson-Morley - aquele que fez com que os físicos deixassem o éter de lado - impôs a exigência de uma velocidade constante da luz em todos os sistemas de referência.
       

      Vários experimentos já questionaram a sequência de causa e efeito no reino da física quântica. [Imagem: Universidade de Viena]
       
      Causas sem efeitos e efeitos sem causas
       
      A Teoria Especial da Relatividade é uma estrutura coerente que permite três tipos de soluções matematicamente corretas: um mundo de partículas se movendo a velocidades subluminais (abaixo da velocidade da luz), um mundo de partículas se movendo à velocidade da luz e um mundo de partículas se movendo a velocidades superluminais (acima da velocidade da luz).
       
      Esta terceira opção sempre foi rejeitada porque, pela própria teoria, ela não teria nada a ver com a realidade, dado o pressuposto da velocidade máxima permitida no Universo, a da luz - exatos 299.792.458 metros por segundo.
       
      "Nós nos colocamos a seguinte questão: O que acontece - por enquanto, sem entrar na fisicalidade ou não fisicalidade das soluções - se levarmos a sério não uma parte da Teoria Especial da Relatividade, mas toda ela, incluindo o sistema superluminal? Esperávamos paradoxos de causa-efeito. Em vez disso, o que vimos foram exatamente aqueles efeitos que formam o núcleo mais profundo da Mecânica Quântica," escrevem Dragan e Ekert.
       
      Inicialmente, os dois físicos consideraram um caso simplificado, como é comum nessa parte da ciência: Um espaço-tempo com todas as três famílias de soluções, mas consistindo em apenas uma dimensão espacial e uma dimensão temporal (1 + 1). Nesse modelo, uma partícula em repouso em um sistema de soluções parece mover-se superluminalmente no outro, o que significa que a própria superluminosidade é relativa nesse quadro ampliado.
       
      Em um continuum espaço-temporal construído dessa maneira, eventos não-determinísticos ocorrem naturalmente. Se, em um sistema no ponto A, houver a geração de uma partícula superluminal, mesmo completamente previsível, emitida em direção ao ponto B, onde simplesmente não há informações sobre os motivos daquela emissão, então, do ponto de vista do observador no segundo sistema, eventos se desenrolam do ponto B ao ponto A, de forma que eles emergem de um evento completamente imprevisível. Acontece que efeitos análogos também aparecem no caso de emissões de partículas subluminais.
       
      Os dois físicos também demonstraram que, quando se levam em conta soluções superluminais, o movimento de uma partícula em múltiplas trajetórias simultâneas surge naturalmente, e uma descrição do curso dos eventos exige que se introduza uma soma de amplitudes de probabilidade combinadas que indicam a existência de superposição, um fenômeno até agora associado apenas à Mecânica Quântica, em que uma partícula pode estar em vários lugares ao mesmo tempo.
       

      Os físicos estão usando metamateriais para saltar entre dimensões na estrutura do espaço-tempo. [Imagem: Cortesia Vytautas Navikas/EPFL]
       
      Três dimensões do tempo
       
      No caso do espaço-tempo com três dimensões espaciais e uma dimensão temporal (3 + 1), ou seja, correspondendo à nossa realidade física, a situação é mais complicada. O princípio da Relatividade em sua forma original não é preservado - os sistemas subluminal e superluminal são distinguíveis, sem superposição.
       
      No entanto, os dois físicos notaram que, quando o princípio da Relatividade é modificado para uma forma definida como "A capacidade de descrever um evento de maneira local e determinística não deve depender da escolha de um sistema de referência inercial", então isso limita as soluções àquelas nas quais todas as conclusões da consideração no espaço-tempo (1 + 1) permanecem válidas.
       
      "Nós notamos, aliás, a possibilidade de uma interpretação interessante do papel das dimensões individuais. No sistema que parece superluminal para o observador, algumas dimensões espaço-temporais parecem mudar seus papéis físicos. Somente uma dimensão da luz superluminal tem um caráter espacial - aquela ao longo do qual a partícula se move. As outras três dimensões parecem ser dimensões do tempo," contou Dragan.
       
      Princípio quântico da Relatividade
       
      Uma característica das dimensões espaciais é que uma partícula pode se mover em qualquer direção ou permanecer em repouso, enquanto em uma dimensão temporal ela sempre se propaga em uma direção - é o que chamamos de envelhecimento na linguagem cotidiana.
       
      Assim, três dimensões temporais do sistema superluminal com uma dimensão espacial (1 + 3) significariam que as partículas envelheceriam inevitavelmente três vezes simultaneamente. O processo de envelhecimento de uma partícula em um sistema superluminal (1 + 3), observado a partir de um sistema subluminal (3 + 1), teria a aparência de uma partícula movendo-se como uma onda esférica, levando ao famoso princípio de Huygens (todos os pontos em uma frente de onda podem ser tratados eles próprios como uma fonte de uma nova onda esférica) e ao dualismo onda-partícula, cernes da teoria quântica.
       
      E isso não é mais estranho do que a própria Mecânica Quântica, dizem os dois físicos.
       
      "Toda a estranheza que aparece quando consideramos soluções relacionadas a um sistema que parece superluminal acaba por não ser mais estranha do que o que a teoria quântica geralmente aceita e experimentalmente verificada tem dito há muito tempo. Pelo contrário, levando em conta um sistema superluminal, é possível - ao menos teoricamente - derivar alguns dos postulados da Mecânica Quântica a partir da Teoria Especial da Relatividade, que não são geralmente aceitas como resultantes uma da outra, mas de outras razões mais fundamentais," concluiu o Dr. Dragan.
       
      Fonte: https://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=eventos-acima-velocidade-luz-unificacao-fisica-quantica-relatividade&id=010130200403#.Xoc4dEBKjIU
    • By SystSoftPcCelTv
      Reinventando o computador: computação inspirada no cérebro para uma era pós-Lei de Moore
       
      À medida que a Lei de Moore chega ao fim com um limite para o número de transistores que cabem em um chip, um paradigma de computação neuromórfica inspirada no cérebro abre caminho com novas direções em hardware, algoritmos, arquiteturas e materiais de computação.
       

       
       
      WASHINGTON, DC, 15 de janeiro de 2020 - Desde a invenção do transistor em 1947, o desenvolvimento da computação viu uma duplicação consistente do número de transistores que podem caber em um chip. Mas essa tendência, conhecida como Lei de Moore, pode atingir seu limite, pois os componentes de tamanho submolecular encontram problemas com o ruído térmico, impossibilitando ainda mais o dimensionamento.
      Em seu artigo publicado esta semana na Applied Physics Reviews , da AIP Publishing, os autores Jack Kendall, da Rain Neuromorphics, e Suhas Kumar, da Hewlett Packard Labs, apresentam um exame completo do cenário da computação, concentrando-se nas funções operacionais necessárias para avançar o cérebro computação neuromórfica inspirada. O caminho proposto inclui arquiteturas híbridas compostas de arquiteturas digitais, juntamente com um ressurgimento de arquiteturas analógicas, possibilitadas pelos memristores, que são resistores com memória que podem processar informações diretamente onde estão armazenadas.
      "O futuro da computação não será colocar mais componentes em um chip, mas repensar a arquitetura do processador desde o início para simular como um cérebro processa informações com eficiência", disse Kumar.
      "Começaram a surgir soluções que replicam o sistema de processamento natural de um cérebro, mas tanto os espaços de pesquisa quanto os de mercado estão abertos", acrescentou Kendall.
      Os computadores precisam ser reinventados. Como os autores apontam, "Os computadores de ponta atualmente processam aproximadamente tantas instruções por segundo quanto um cérebro de inseto" e eles não têm a capacidade de escalar efetivamente. Por outro lado, o cérebro humano é cerca de um milhão de vezes maior em escala e pode realizar cálculos de maior complexidade devido a características como plasticidade e escarsidade.
      Reinventar a computação para emular melhor as arquiteturas neurais no cérebro é a chave para resolver problemas dinâmicos não-lineares, e os autores prevêem que a computação neuromórfica será disseminada no início desta década.
      O avanço das primitivas da computação, como não linearidade, causalidade e escarsidade, em novas arquiteturas, como redes neurais profundas, trará uma nova onda de computação que pode lidar com problemas de otimização com restrições muito difíceis, como previsão do tempo e seqüenciamento de genes. Os autores oferecem uma visão geral dos materiais, dispositivos, arquiteturas e instrumentação que devem avançar para que a computação neuromórfica amadureça. Eles emitem um plano de ação para descobrir novos materiais funcionais para desenvolver novos dispositivos de computação.
       
      O artigo "Os blocos de construção de um computador inspirado no cérebro" é de autoria de Jack D. Kendall e Suhas Kumar. O artigo foi publicado na revista Applied Physics Reviews em 14 de janeiro de 2020 
       
      fonte : https://www.eurekalert.org/pub_releases/2020-01/aiop-rtc011520.php#
    • By GNMilasi
      FGV, HARVARD, SENAI, UDEMY liberam cursos gratuitos para você fazer estando em quarentena.
       
       

       
      Pessoal, vejam só, não fique somente vendo TV e Series, mas estude, prepare-se para o melhor, confira estes cursos online gratuitos para fazer estando em isolamento domiciliar que muitos estão fazendo.
       
      A FGV liberou 55 cursos gratuitos na área de Administração, Negócios, Carreira e Direito, HARVARD, SENAI, liberaram cursos em diversas áreas e a Udemy também liberou mais de 40 cursos na área de desenvolvimento de software e inteligência artificial.
       
      Vale a pena conferir os cursos disponíveis, tem nas mais diversas áreas!
       
      FVG: https://estagioonline.com/cursos/coronavirus-55-cursos-online-gratuitos-da-fgv-para-fazer-durante-a-quarentena?ref=eo
       
      SENAI: https://engenhariae.com.br/editorial/colunas/senai-libera-12-cursos-online-gratuitos-e-com-certificados
       
      SENAI: https://estagioonline.com/cursos/coronavirus-cursos-online-gratuitos-do-senai-para-fazer-durante-a-quarentena?ref=insta
       
      Udemy: https://engenhariae.com.br/editorial/colunas/udemy-libera-40-cursos-gratuitamente-por-conta-da-quarentena-contra-coronavirus
       
      HARVARD: https://estagioonline.com/cursos/coronavirus-100-cursos-online-gratuitos-de-harvard-para-fazer-durante-a-quarentena?ref=insta

       
       
       
      https://news.microsoft.com/pt-br/nosso-compromisso-com-os-clientes-durante-o-covid-19/?ocid=AID2400944_TWITTER_oo_spl100001168383688
       
      https://www.ev.org.br/Cursos
       
      https://cursos.faber-castell.com.br/combos/combo-numero-emcasacomfabercastell?utm_source=instabio&utm_campaign=faberemcasa&utm_content=link&fbclid=IwAR0hb53sRi84svqnHAkJPVmCGCje54kyMAnpVpVklBW2biA4DZMw3QYKh30
       
       
      Fonte

SOBRE O ELETRÔNICABR

EletrônicaBR é o melhor fórum técnico online, temos o maior e mais atualizado acervo de Esquemas, Bios e Firmwares da internet. Através de nosso sistema de créditos, usuários participativos têm acesso totalmente gratuito. Os melhores técnicos do mundo estão aqui!
Técnico sem o EletrônicaBR não é um técnico completo! Leia Mais...
×
×
  • Create New...